Experimental Study of β and α

- 1. A brief reminder of the CKM triangle
- 2. Measurements of sin 2β
- 3. Details of the CDF measurement
- 4. Plans and Prospects for
 - $\sin 2\beta$
 - $\sin 2\alpha$
- 5. Summary

William Trischuk University of Toronto/CDF BCP3, Taipei December 1999

The CKM Triangle

Unitary CKM matrix governs weak decay of quarks

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Wolfenstein parametrisation:

$$V_{\mathsf{CKM}} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Unitarity $\rightarrow V^{\dagger}V = 1$ gives:

$$V_{th}^*V_{td} + V_{ch}^*V_{cd} + V_{uh}^*V_{ud} = 0$$

$$\alpha = \arg \left(\frac{-V_{td}V_{tb}^*}{V_{ud}V_{ub}^*} \right) \qquad \beta = \arg \left(\frac{-V_{cd}V_{cb}^*}{V_{td}V_{tb}^*} \right) \qquad \gamma = \arg \left(\frac{-V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right)$$

Constraints on β from CKM Matrix

Experiment

 $\sin 2\beta$

Reference

CKM model fit 0.75 ± 0.09 S. Mele, PRL**59**, 113011 (99)

The CP Asymmetry

• Results in:

$$\frac{dN}{dt}(B^0 \to J/\psi K_S^0) \sim 1 - \sin 2\beta \sin \Delta mt$$

$$\frac{dN}{dt}(\bar{B^0} \to J/\psi K_S^0) \sim 1 + \sin 2\beta \sin \Delta mt$$

ullet CP phase easily seen in CKM matrix element V_{td}

ullet B^0 and $ar{B^0}$ produced at equal rates develop asymmetry:

$$A_{CP}(t) = rac{rac{dN}{dt}(ar{B}^{\scriptscriptstyle 0}
ightarrow J/\psi K_S^{\scriptscriptstyle 0}) - rac{dN}{dt}(B^{\scriptscriptstyle 0}
ightarrow J/\psi K_S^{\scriptscriptstyle 0})}{rac{dN}{dt}(ar{B}^{\scriptscriptstyle 0}
ightarrow J/\psi K_S^{\scriptscriptstyle 0}) + rac{dN}{dt}(B^{\scriptscriptstyle 0}
ightarrow J/\psi K_S^{\scriptscriptstyle 0})} = \sin 2eta \sin \Delta mt$$

Experimental Considerations

- Production mechanism can be important
 - At hadron collider $b\overline{b}$ not produced in coherent state
 - * time averaged asymmetry does not vanish
 - * time dependent asymmetry msmt. improves precision
 - At B factory $B^0 \bar{B}^0$ produced in coherent P-wave state
 - * CP asymmetry only builds after first B meson decays
 - * Must measure asymmetry to access CP information
- ullet Both require tagging of original B^0 flavour to see asymmetry

$$A_{CP}^{obs} = \mathcal{D}A_{CP}$$

- ullet \mathcal{D} is the "tagging dilution"
 - $\mathcal{D} = (N_r N_w)/(N_r + N_w)$
 - $-N_r(N_w)$ are the number of right (wrong) tags
 - Constrain $\mathcal D$ from data
- Precision on sin 2β given by

$$\delta \sin 2eta pprox 0.47 rac{1}{\sqrt{\epsilon \mathcal{D}^2}} \sqrt{rac{S+B}{S^2}}$$

- ϵ is fraction of events with a tag
- -S is number of signal events
- B is number of background events

CDF Data Sample

Both J/ψ muons have SVX information (\approx 200 events)

One or both J/ψ muons lack SVX information (pprox 200 events)

Methods for Tagging Initial B^0 Flavour

Determine the flavour $(B^0 \text{ vs } \bar{B^0})$ at time of production Opposite-Side Tagging

- Charge of opposite-side jet (JETQ)
- Soft e or μ tag from semi-leptonic decay of opposite B (SLT)

Same-Side Tagging

Same-side SVX and non-SVX pion tagging (SST)

Jet Charge Tagging (JETQ)

- ullet Opposite-side b quark can fragment into any B meson
- ullet Identify flavour of b quark through charge of opposite jet
- Use a variant of JADE track cluster algorithm
 - optimised for low p_t jets
- Weight individual track charges by
 - transverse momentum
 - impact parameter ($T_i \approx 0$ for displaced tracks)

$$Q_{jet} = \frac{\sum q_i p_i (2 - T_i)}{\sum p_i (2 - T_i)}$$

- $-Q_{jet} > 0.2 \rightarrow b$
- $-Q_{jet} < -0.2 \rightarrow \overline{b}$
- $|Q_{jet}| < 0.2 \rightarrow$ no tag
- 40% of $J/\psi K_S^0$ have a jet charge tag
- $\mathcal{D}=0.235\pm0.069$ calibrated on $J/\psi K^{\pm}$ sample

Soft Lepton Tagging (SLT)

- Identify flavour of opposite B hadron through $b \to l\nu X$ decay
- Semileptonic branching ratio leads to $\approx 6\%$ efficiency
- Electron selection
 - Central track $(p_t > 1 \text{ GeV/c})$ matched to EM shower
- Muon selection
 - Central track $(p_t>2~{
 m GeV/c})$ matched to muon stub
- ullet When present: $\mathcal{D}=$ 0.625 \pm 0.146 on $J/\psi K^\pm$ sample

Same Side Tagging (SST)

- Opposite tagging limited
 - other b is central only 50% of the time
 - if other b is B^0 or B^0_s it mixes
- Exploit correlated fragmentation on same side

- ullet Use semi-leptonic B meson decays to calibrate SVX sample $\mathcal{D} = 0.166 \pm 0.022$
- ullet Use $B^\pm o J/\psi K^\pm$ sample to calibrate non-SVX sample ${\cal D} = 0.174 \pm 0.036$

Summary of Flavour Tagging

Tagger	Events	efficiency (ϵ)	Dilution (\mathcal{D})
SST	SVX	$35.5 \pm 3.7 \%$	$16.6 \pm 2.2 \%$
SST	non-SVX	$38.1 \pm 3.9 \%$	$17.4 \pm 3.6 \%$
SLT	all	5.6 ± 1.8 %	$62.5 \pm 14.6 \%$
JETQ	all	40.2 ± 3.9 %	$23.5 \pm 6.9 \%$

Tagging algorithms all contribute similar statistical power:

Tagger	$\epsilon \mathcal{D}^2$		
SST	$2.1 \pm 0.5 \%$		
SLT	$2.2 \pm 1.0 \%$		
JETQ	$2.2 \pm 1.3 \%$		

Expect combination of algorithms (with correlations) to give:

$$\epsilon \mathcal{D}^2 = 6.3 \pm 1.7\%$$

 \sim 400 $J/\psi K_s^0$ events equivalent to \sim 25 perfectly tagged events

Combining Different Taggers

- Example: SST ($\mathcal{D}=16.6\%$) and JETQ ($\mathcal{D}=21.5~\%$)
 - If the taggers agree:

$$\mathcal{D}_{eff} = (\mathcal{D}_{SST} + \mathcal{D}_{JETQ})/(1 + \mathcal{D}_{SST}\mathcal{D}_{JETQ})$$

 $\mathcal{D}_{eff} = (0.235 + 0.166)/(1 + 0.235 * 0.166) = 39 \%$

- If the taggers disagree:

$$\mathcal{D}_{eff} = (\mathcal{D}_{SST} - \mathcal{D}_{JETQ})/(1 + \mathcal{D}_{SST}\mathcal{D}_{JETQ})$$

 $\mathcal{D}_{eff} = (0.235 - 0.166)/(1 - 0.235 * 0.166) = 7 \%$

- Sign of the tag governed by JETQ result
- Each event is weighted in the fit by its effective dilution
 (SLT has much higher dilution → over-rules JETQ if both present)

Overview of CDF Fit for $\sin 2\beta$

- Combine all information in maximum likelihood fit
- Allow for charge asymmetries in efficiencies and dilution
 - possible charge biases in tracking at low p_t
 - $-\ K^{\pm}$ interaction rate differences
 - Charge asymmetric backgrounds (beampipe spallation)
- No significant asymmetries observed
- Likelihood function includes event-by-event probabilities for
 - Observed decay length
 - Reconstructed candidate mass
 - Efficiency and tagging probability
- Include constraints from other data $(B^+ \to J/\psi K^+)$
 - tagging efficiencies
 - dilutions
- Take external inputs for τ_{B^0} , Δm_d , m_B
 - Allow them to float within their errors

Result of Combined Fit

Measure

$$\sin 2\beta = 0.79^{+0.41}_{-0.44}(stat + syst)$$

Systematic Uncertainties

Can split off systematic uncertainty

$$\sin 2\beta = 0.79 \pm 0.39(stat) \pm 0.16(syst)$$

Effect	Evaluated	δ sin 2 eta	
\mathcal{D} Δm_d $ au_{B^0}$ m_B charge bias K_L^0 regen.	in fit in fit in fit refit external external	0.16 0.01 0.01 0.01 negligible negligible	

- ullet Systematic dominated by $\delta \mathcal{D}$ measured in data
 - Uncertainty will scale with more data

Individual Results from Sub-samples/Sub-tags

Tagger	$\sin 2\beta$	Uncertainty
full fit SST SLT JETQ	0.79 2.03 0.52 -0.31	+0.41 -0.44 $+0.84$ -0.77 $+0.61$ -0.75 $+0.81$ -0.85

- Are the three sub-results consistent?
- χ^2 of 4.6 for 2 degrees of freedom ($\mathcal{P} = 10\%$)

Toy Monte Carlo Test of Fit Results

- Generate 1000 simulated "experiments" with
 - 400 $J/\psi K_S^0$ candidates 50-50 split with lifetime info
 - Backgrounds and tagging dilutions as observed
- Expected uncertainties support what we see in data (left)
- Fit returns errors consistent with fit value (right)

Have We Seen CP-Violation in B Decays?

Scan likelihood function:

- Feldman and Cousins frequentist limit:
 - 0 < \sin 2 β < 1 at 93% CL
- Bayesian limit (assuming flat prior in sin 2β):
 - 0 < \sin 2 β < 1 at 95% CL
- Assume $\sin 2\beta = 0$ and our uncertainty
 - Integrate Gaussian from $0.79 \rightarrow \infty$:
 - $Prob(\sin 2\beta > 0.79) = 3.6 \%$
- ullet Best direct evidence for CP violation in B sector

Determinations of β

Experiment	sin 2 eta	Reference
OPAL CDF (initial) CDF (update) ALEPH (prelim)	$3.2^{+1.8}_{-2.0}(stat) \pm 0.5(sys)$ $1.8 \pm 1.1(stat) \pm 0.3(sys)$ $0.79 \pm 0.39(stat) \pm 0.16(sys)$ $0.93^{+0.64}_{-0.88}(stat)^{+0.36}_{-0.24}(sys)$	Euro. Phys. C5 , 379 (98) PRL 81 , 5513 (98) hep-ex/9909003 R. Forty, this conference
Average	0.82 ± 0.38	My average
CKM model fit	0.75 ± 0.09	S. Mele, PRL 59 , 113011 (99)

Prospects for $\sin 2\beta$ at Tevatron

- Run II at CDF will see:
 - $\times 20$ increase in luminosity (initially)
 - $\times 1.5$ increase in SVX acceptance
 - ×2 for improved μ coverage and lower p_t for J/ψ
- ullet Will yield 10,000 $J/\psi K_S^0$ decays for 2 fb $^{-1}$
- Calibration samples will grow by similar factor
- Even if no improvement in flavour tagging expect

$$\delta \sin 2\beta \approx 0.08$$

- Further improvements should come from
 - Addition of $J/\psi \to e^+e^-$ final states
 - Improvements to flavour tagging (TOF in CDF)
- D0 will have similar capabilities

Prospects for $\sin 2\beta$ at B Factories

• Wider range of final states being attacked

State	Babar (30 fb $^{-1}$)	Belle (100 fb $^{-1}$)
$J/\psi K_S^0(\pi^+\pi^-) \ J/\psi K_S^0(\pi^0\pi^0)$	0.12 0.30	0.10 0.20
$J/\psi K_L^0$	0.15	0.12
~ ~	0.15 0.44	0.12

- Expect sizeable fraction of "1 yr" datasets by next summer
- $D^{*+}D^{*-}$ will start to investigate penguin phases

Prospects for sin 2α

- $B^0 \to \pi^+\pi^-$ is simplest CP eigenstate related to α
- $\mathcal{B}(B^0 \to K^+\pi^-)$ suggests penguin amplitudes significant

- Focus first on $\pi^+\pi^-$ asymmetry $(A_{\pi^+\pi^-})$
- Determine non-CKM contribution to relative phases later

CDF All Hadronic Trigger

- Level 1: 2 tracks with $p_t > 2$ GeV/c
 - $-\sigma_{p_t} pprox 0.02 p_t^2$
 - L1 can run up to 50 kHz deadtimeless
- Level 2: Both tracks with $d>100~\mu\mathrm{m}$
 - $-\sigma_d pprox 20 \oplus 40/p_t \, \mu \mathrm{m}$
 - beamspot smaller than 25 μm
- Level 3: Use full reconstruction
 - factor of 2-5 further reduction

Luminosity	$T_{ m cross}$ (ns)	$\overline{N_{par{p}}}$	L1 (kHz)	L2 (Hz)
0.7×10^{32}	396	2	18	39
2.0×10^{32}	132	2	30	67
1.7×10^{32}	396	5	28	38

- Yield in 2 fb $^{-1}$:
 - 4000 7000 $B^0 \to \pi^+\pi^-$ ($\mathcal{B} = 0.5 \times 10^{-5}$)
 - 16000 28000 $B^0 \to K^+\pi^-$ ($\mathcal{B} = 1.9 \times 10^{-5}$)

Backgrounds to $B \to \pi^+\pi^-$

- Physics backgrounds
 - Use invariant mass to distinguish $\pi\pi$ from $K\pi$ and KK

- dE/dx in tracking chambers
- Will have TOF but ...
 - * One sigma πK separation up to 1.6 GeV/c
 - * Mainly for flavour tagging (an additional $\epsilon \mathcal{D}^2 \sim 2.4\%$)
- $K\pi$ has $\cos\Delta m_d$ time dependence
- QCD light quark fakes + heavy quark combinatorics
 - studied with run I data, estimate S:B > 1:4
 - subject of study at ongoing FNAL B Physics workshop
- Expect $\delta A_{\pi^+\pi^-} \sim 0.13$ (for 5000 events)

Prospects for $A_{\pi^+\pi^-}$ at B Factories

- ullet Wider range of modes being studied at B factories
- Asymmetry in $\pi^+\pi^-$ thoroughly studied
 - Babar $\delta A_{\pi^+\pi^-} = 0.26$ (30 fb⁻¹)
 - Belle $\delta A_{\pi^+\pi^-} = 0.15 \ (100 \ \mathrm{fb}^{-1})$
- ullet Interpretation of asymmetry in terms of lpha complicated by
 - Weak phases from penguin contributions
 - Strong phases may be measured (see below)
 - Could introduce systematic of $\delta \alpha = 0.2$ (or larger)

Constraining Penguin Contributions

• Study isospin symmetry in B decays (Gronau, London)

$$-\ B^0 \to \pi^+\pi^-,\ B^0 \to \pi^0\pi^0,\ B^- \to \pi^-\pi^0$$

$$-~\mathcal{B}(B^0 o \pi^0 \pi^0) \sim 10^{-6} o ext{very low statistics}$$

- Even more ambitious study $B \to \pi\pi\pi$ decays (Quinn, Snyder)
 - Dalitz analysis of modes $ho^{\pm,0}\pi^{\mp,0}$
 - Extract 10 Amplitudes (5 tree, 5 penguin)

Too many variables to predict outcome at this stage

Summary

- ullet CDF has made first meaningful measurement of sin 2eta
- ullet $\sigma_{bar{b}}$ at hadron machines
 - allows us to compete with B factories
 - despite higher backgrounds/lower dilutions
- ullet Experimental measurements with $\delta \sin 2eta pprox 0.1$ on horizon
- Tools in place to attack $\pi^+\pi^-$ asymmetry
 - ideas exist to pin down penguin contributions
 - will take time/luminosity to sort out
- Should make significant progress between now and BCP4